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Abstract: Haptics can be defined as the characterization and identification of objects by voluntary
exploration and somatosensory feedback. It requires multimodal sensing, motor dexterity, and high
levels of cognitive integration with prior experience and fundamental concepts of self versus external
world. Humans have unique haptic capabilities that enable tool use. Experimental animals have much
poorer capabilities that are difficult to train and even more difficult to study because they involve
rapid, subtle, and variable movements. Robots can now be constructed with biomimetic sensing and
dexterity, so they may provide a suitable platform on which to test theories of haptics. Robots will
need to embody such theories if they are ever going to realize the long-standing dream of working
alongside humans using the same tools and objects.
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Introduction

The term “haptics” has been used variously by
psychologists to mean the science of the sense of
touch, by computer technologists for tactile feed-
back from an electronic device, and by aesthetic
philosophers to denote affective responses to
manual exploration. We shall use it here to

denote the intersection of these usages as “the
identification of properties of objects via voluntary
exploration and somatosensory feedback.” The
entity doing the identification can be human or
machine, the properties of the object can be physi-
cal or aesthetic, somatosensory includes both tac-
tile and proprioceptive modalities from any body
part (or their machine equivalents), and the inter-
action must involve active movement.

Natural scientists usually seek to understand a
phenomenon by reducing it to its component
parts. Psychologists have catalogued the
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exploratory behaviors made by human adults and
infants when confronted by a novel object and
neuroscientists have identified and characterized
the receptors activated by such behaviors (Jones
and Lederman, 2006). Nevertheless, we are
lacking what David Marr called a “theory of com-
putation” (Marr, 1982). In recent years, fairly
strong theories of computation have been devel-
oped for many aspects of perceptual and even cog-
nitive behavior. These usually derive from
systematic recordings of neural activity from vari-
ous brain regions of highly trained animals
performing tasks and correlations of such activity
with various parameters of the performance. This
strategy is difficult to apply to haptics because few
animals have anything like the manual dexterity
of humans. For haptic behaviors that are feasible
for animals, the movements and forces between
the digits and objects are difficult to capture and
the steps in the complex sequences tend to be vari-
able and uncontrollable by the experimentalist.
The difficulties of a reductionist approach to
haptics can be appreciated by comparison with
locomotion, another class of sensorimotor
behaviors. The mechanics and control of walking
in animals are now fairly well understood because
reproducible behavior is easily generated and
measured in both intact and reduced preparations
(McCrea and Rybak, 2008). Some of the principles
have been successfully incorporated into
robots that perform reasonably well (Buchli and
Ijspeert, 2004).

The process of building machines that incorpo-
rate principles of operation of living organisms is
called biomimetic design. We propose that a the-
ory of haptics can be developed and tested by
starting with biomimetic robots and attempting
to emulate the behaviors and capabilities of
human subjects. Recent advances in mechatronics
(engineered systems combining mechanical com-
ponents with electronic control) have made it pos-
sible to emulate the mechanical behavior of
biological hands and limbs (Delcomyn, 2007).
Sensors built into the actuators and mechanical
linkages provide the equivalent of proprioceptive

information. Impedance control of the actuators
can be used to emulate the natural compliance
of biological limbs (Hogan, 1984; Pratt et al.,
1996). Multimodal tactile information can be
provided by a new sensor array that mimics the
mechanical properties and robustness of a human
fingertip (Wettels et al., 2008). It may be possible
and perhaps even necessary to emulate the hier-
archical structure of the biological nervous sys-
tem, in which the brain formulates high-level
strategies and tactics and the spinal cord
coordinates the action of muscles and regulates
the interactions with external objects (Raphael
et al., 2010). If the controller of a mechatronic
equivalent of a biological system could use a the-
ory of computation to achieve humanlike haptic
performance, this would be suggestive that the
brain may be using a similar theory of computa-
tion. It should also be possible to apply such
knowledge to the design of neural prosthetic sys-
tems to restore dexterity to patients with paralysis
or amputation of their arms (Fig. 1).

Components of haptic behavior

The motor strategies that humans use to explore,
characterize, and identify objects have been
catalogued by psychologists (Jones and
Lederman, 2006; Lederman and Klatzky, 1987).
These strategies seem reasonable in view of
the various somatosensory modalities that have
been identified neurophysiologically, but they fall
far short of a theory of computation for haptic
behavior and they provide no insight into how
they developed in the first place.

Development of internal representations
of objects

We shall start with the assumption that the
developing nervous system has little or no
preconceived information about itself or the other
entities that comprise its world and must instead
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self-organize its internal representations by
detecting patterns of coherence in the incoming
sensory information and its own outputs. This is
the starting assumption for the unsupervised neu-
ral networks that were modeled in the early days
of artificial intelligence (Haykin, 1999; Hebb,
1949). It is now clear that a certain amount of sig-
nal processing is genetically hardwired into the
physical structure of primary sensory receptors
and their associated local circuitry, which presum-
ably predisposes the perceptual nervous system to
start with specific salient features. Nevertheless,

the development of internal representations is
known to depend on actual experience, often
associated with “critical periods” of neonatal
development and plasticity (Crair et al., 1998;
Hubel and Wiesel, 1970). We shall here assume
that the objects to be represented centrally have
an identity that is static, but this identity must be
built up from highly dynamic interactions and it
includes information required to predict dynamic
behavior of the object.

Identification of self

The first thing that a self-organizing brain is likely
to recognize is that some, but not all, of the sen-
sory information coming back is contingent on
motor signals that the brain sends out, initially
randomly and eventually purposefully. The con-
tingent sensory data are associated with the exis-
tence of a self; sensory data that are constant or
inconsistently modified by efferent signals con-
stitutes evidence of external entities, which are
defined later. The representation of self is essen-
tially a mapping between efferent signals and pro-
prioceptive and visual afferent signals that
represents the set of movements that the organ-
ism can make.

Efferent and afferent feedback In order to recog-
nize the correlations between efferent and affer-
ent signals, both must be available as inputs to a
perceptual center. This explains why efferent
projections are accompanied by recurrent
projections that are organized similarly to affer-
ent sources.

Internal reference frames Much has been written
about the coordinate frames used by various parts
of the brain to represent the relationships of the
self to the external world. Some of them appear
to be inherent in the structure of sense organs
(e.g., retinotopic and cutaneous maps), others
are likely to arise as the CNS detects robust cor-
relations among the senses (e.g., extrapersonal
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Fig. 1. Restoration of haptic function in patients with paralysis
or amputation of the upper extremity requires both
bidirectional interfaces with sensory and motor signals and a
control system that can integrate those signals with command
signals from the patient to provide coordination and rapid
adjustments. Neuromuscular electrical stimulation (NMES)
interfaces in the paralyzed limbs could utilize injectable,
wireless microdevices called BIONs (Loeb et al., 2001; Sachs
and Loeb, 2007).
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space as fusion of visual information with gaze
direction and proprioceptive feedback of pos-
ture), and some are purely mathematical
creations designed to account for psychophysical
data (e.g., shoulder-centered kinesthesia;
Soechting and Flanders, 1989).

One likely outcome of adaptive neural
networks is that they can extract more-or-less
orthogonal representations of whatever principal
components are present in their input data, but
this begs the question of what the extracted
coordinates might represent. If a given dataset
can be adequately represented by a particular
orthogonal coordinate frame (an eigenvector), it
can also be equally well represented by other
coordinate frames that are rotations of the first
in eigenspace. At the early stages of sensory
information processing, the coordinate frames of
the neural representations may bear a strong
resemblance to the physical structure of the sense
organs from which the input signals are derived,
but they will become increasingly abstract at
higher levels where inputs are multimodal. The
motor cortex integrates highly abstracted
representations from many areas of association
cortex plus relatively low-level direct input from
proprioceptors. Thus, it is not surprising that sim-
ple attempts to correlate its output signals or its
topography to simple physical coordinates based
on either sensory input (extrapersonal space) or
motor output (muscles) have been frustrating
(Churchland and Shenoy, 2007).

The notion of first identifying “self” suggests
that the internal coordinates of many, if not most,
cortical areas will be different from each other
but will reflect a combination of both afferent
and efferent information. Such hybrid coordinate
frames do not have simple physical or mathemat-
ical analogs and may vary from subject to subject
(see below), so we have no guesses to correlate
with neural activity. If they exist, we must first
identify the neural processes and hierarchies that
lead to their emergence.

Definition of surfaces

Once the organism has a repertoire of movements
in extrapersonal space, it is in a position to recog-
nize visual signals that do not change as a result of
such movement (except occlusions by self) but
that give rise to somatosensory and perhaps audi-
tory signals when the movement reaches the place
of those visual signals. Thus, the first externality
to be represented in the brain seems likely to be
the notion of surfaces that obstruct otherwise free
limb movements.

Definition of rigid objects

Once the organism knows how to make contact
with surfaces in extrapersonal space, it is in a
position to recognize that contact between itself
and a subset of those surfaces can result in
changes in subsequent visual appearance and
somatosensory feedback from those surfaces. This
is the definition of a movable object as opposed to
a fixed surface. By systematically reorienting its
view of a rigid object, the brain can associate all
the different patterns of sensory feedback that
can be produced by that object, forming a fused
percept. By systematically grasping and exploring
the object, the brain can include in this percept
information about weight, inertia, friction, ther-
mal properties, etc.

Definition of deformable objects

Once the organism can recognize and manipulate
rigid objects, it can appreciate that certain types
of object have an even richer set of visual and
somatosensory feedback depending on which of
a limited set of states they occupy. Those states,
in turn, may depend on the history of interactions
with the object (e.g., hingelike motion) or the for-
ces being applied (e.g., elastic deformation).

132

Author's personal copy



Definition of tools

Once the organism can recognize and manipulate
any object, it is in a position to cause interactions
between objects and surfaces, for example, using
one object to hit and cause noise and/or move-
ment of another object or surface. This is the def-
inition of rudimentary tool use.

Definition of materials

An organism that can recognize objects that have
a closed set of possible appearances can then rec-
ognize interactions that cause an object to change
its appearance permanently. This is the definition
of breaking or otherwise permanently changing
an object, which renders it a material that can
be used to create other objects (e.g., flaking stone
tools, molding clay pots). Infants commonly han-
dle known objects aggressively, as if they are fas-
cinated by whether or not they fall into the
category of things that can be broken.

Integrating exteroceptive senses

In the developmental sequence hypothesized
above, visual information is only one of many
types of sensory and efference copy information
from which the structure of the self and the exter-
nal world must be defined. By contrast, most
roboticists start with sophisticated machine vision
and use that as the basis for motor planning and
sensory fusion. Infants are relatively slow to
develop visual acuity, relying instead on tactile
information from both fingers and mouth (Gib-
son, 1988). Adults who are blind from birth
develop sophisticated representations of objects
and dexterity in manipulating and characterizing
them (Marks, 1983; Smitsman and
Schellingerhout, 2000). What they do lack is a
sense of how the visual appearance of objects
changes with point of view (Heller et al., 1996).
This is actually a problem rather than an attribute

of vision, and much of machine vision and pre-
sumably human vision is concerned with over-
coming this problem so as to maintain a
veridically fused representation of individual
objects. Thus, it seems both easier and more
appropriate for these high-level visual capabilities
to emerge spontaneously based on the perceived
utility of visual information rather than as a pre-
ordained organizing principle for the brain.

The sounds made by objects and their
interactions are rarely considered in robotics but
they appear to be of great interest to infants.
Sound contains valuable information that may
be difficult to extract from other sensory
modalities and it tends to be integrated centrally
with other sensory modalities including touch
(Bresciani and Ernst, 2007). Most obviously,
sound provides precise temporal information,
which can be useful for understanding kinetic
interactions during touch. It also provides a valu-
able hint about the mutability of objects—articu-
lated objects often change shape silently or with
repeatable sounds whereas breaking an object is
often accompanied by a nonrecurring sound.
Attributes such as hollowness may be impossible
to perceive in any other way. The vibrotactile
spectrum (up to "800 Hz) substantially overlaps
the acoustic spectrum (20–20,000 Hz). Both may
use temporospatial cross-correlation to extract
useful information (Johansson and Flanagan,
2009; Loeb et al., 1983), but neither biological
mechanism is well understood. Nevertheless,
acoustic information is easy to acquire electroni-
cally and to preprocess in a way that conveys at
least some of its biological saliency.

Testing new entities against internal
representations

Once the organism has defined all major classes
of entities in its world and has a reasonable
library of sensorimotor patterns associated with
previously encountered entities in each class, then
its daily existence and continued development
depend on two complementary capabilities:
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# Recognizing when a newly encountered entity is
sufficiently similar to a previously known entity
to treat them as identical.

# Recognizing when a newly encountered entity is
sufficiently dissimilar to all previously known
entities to warrant creation of a new item in
the library.

These decisions can be seen as forced-choice
outcomes of Bayesian decision making, in which
the probability of picking one or the other usually
depends on fragmentary data and a complex set
of prior information about the probability of a
known entity being present, the importance of
not making a mistake, and the cost of obtaining
additional information. This cost has at least two
dimensions, reflecting the energetic cost of the
exploratory movement and its execution time.
For many of the haptic discrimination tasks facing
a hunter-gatherer, execution time will be criti-
cal—foraging time is limited and prey whose
own motor behaviors cannot be identified and

countered tends to escape. Bayes’ theorem is use-
ful for decision making once the new data are in
hand (Kording, 2007), but it must be extended
to account for the decision about which data to
pursue based on the relative costs and the
expected discriminative value of the new data.
This depends on having an accurate and immedi-
ately accessible representation of all the possible
associations between exploratory movements and
the sensory data that they are likely to yield (Fig. 2).
This suggests that the internal representation of the
properties of objects in the brain is not in the usual
canonical coordinates that we define in physics
(e.g., mass, rotational inertia, hardness, friction,
etc.), but rather in the associational coordinates of
learned exploratory movements and the critical
raw sensory signals associated with them. For
example, the representation of mass of a given
object is the association between the parameters
of a hefting exploratory movement and the propri-
oceptive and tactile data resulting from hefting that
object. In fact, it is possible that the goal of hefting

Fig. 2. Haptic exploration to identify an object can be conceptualized as an interactive sequence of hypothesis testing designed to
collect specifically those data Di that are most likely to shift the prior probabilities P(A), P(B) sufficiently to conclude that the object
matches an object that produces similar data when subjected to those exploratory strategies.
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is to obtain similar sensory feedback from all
objects, in which case the discriminative informa-
tion is actually in the parameters of the hefting
movement itself (e.g., amount of motor effort
required to produce a given acceleration of the
object). Similarly, the shape of an object obtained
from contour following may be reflected in the
sequence of exploratory movements required to
keep the fingertip following a feature and thereby
generating constant tactile feedback.
The choice of exploratory movement also

involves the decision to stop exploration and set-
tle on whatever is the currently most likely identi-
fication. There are many circumstances when
erroneous “lumping” with previous experience is
“good enough,” which accounts for a wide range
of illusions, beloved of psychophysicists,
magicians, and trial lawyers. When the brain
insists that all is not familiar even after exhaustive
exploration, the problem becomes one of creating
a new percept that is associated with and based
upon the closest known match. This leads to both
a parsimonious extension of the coordinates of
the existing internal representations and
associations that facilitate access to previously
developed strategies for handling similar but dif-
ferent entities. It is important to recognize that
this incremental learning about the world is likely
to give rise to internal representations of the same
entity that are quite different among individuals,
because they depend on the sequence of all other
entities to which each individual was exposed
during its prior experience.

Hierarchical system of sensorimotor control

The nervous system may start out “tabula rasa”
but it is not free from genetically determined
structures that evolved because they promote
and accelerate the functionality that must develop
ontogenetically. Each part of the nervous system
tends to start with certain types of computational
elements (neurons) whose various properties are

specified. The initial interconnections among
them appear to follow certain general rules and
the rules for modifying that connectivity as a
result of experience appear to be quite specific.
In sensory systems, the sequence of embryologi-
cal development gives rise to topographic
gradients that are related to physical coherence
in the signals that will later be experienced (e.g.,
retinotopic, cochleotopic, and somatotopic maps),
so it has been natural (but not necessarily useful;
see below) to interpret the higher levels of per-
ceptual processing in those same coordinate
frames. Organizing the motor system from
periphery upward is appealing because the
peripheral elements effectively define the compu-
tational problem that must be solved at higher
levels of motor planning, but the major informa-
tion flow is necessarily in the opposite direction
from sensory systems. This discussion considers
what is known about the structure and
relationships from the bottom up but from the
perspective of motor function, which is top-down.

Design of the spinal regulator

Industrial robots use hierarchical control that is
usually divided into a movement planning level
and a servocontrol level. For the last 50 years,
sensorimotor neurophysiologists have tried to
interpret the brain and spinal cord as analogous
to those respective engineering subsystems, with
little success. As details of the anatomical cir-
cuitry and physiological signals have been
elucidated, it has become clear that they are not
consistent with such an interpretation. The cir-
cuitry in the spinal cord is much more complex
and integrative than an engineering servocontrol
and the signals in the brain correlate only loosely
with many different aspects of the output behav-
ior. The spinal cord may function more like
another, more sophisticated engineered system—

a programmable regulator (He et al., 1991; Loeb
et al., 1990). Recently, models of
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neuromusculoskeletal systems based on the
known circuitry of the spinal cord have been
shown to have highly useful emergent properties
that were completely unexpected (Raphael
et al., 2010). The biological regulator consists of
component circuits with specific combinations of
input and output signals that have evolved and
remained stable over many millions of years of
vertebrate evolution. The brain can “program”

the gains of these elements via relatively simple
descending command signals so that the highly
phasic and coordinated sequences of muscle
activations required to perform each task are gen-
erated by the nonlinear combinations of these
commands and ongoing sensory feedback.
Despite the large number of gains that must be
set, simple gradient descent algorithms converge
rapidly and inevitably to stable solutions that per-
form similarly to human subjects doing the same
tasks. The set of interneurons defines a high
dimensional space that is rich in “good enough”
local minima. When started from random gains,
the controller quickly “discovers” a nearby local
minimum defined by the cost function used for
training. Because the output is generated by
circuits that include rich combinations of sensory
feedback, the solutions automatically handle
whatever types of noise, perturbations, or com-
plex loads were included in the training set.

Since the pioneering work of Nicolas Bernstein
in the 1930s, both motor psychologists and robot-
icists have been concerned with resolving the prob-
lem of “redundancy,” in which there are more
articulations or actuators than necessary to per-
form a given task (Bernstein, 1967). The program-
mable regulator turns this problem around,
greatly expanding the redundancy at the interneu-
ronal level to ensure that a single system can gener-
ate a virtually unlimited repertoire of desirable
behaviors depending on the goals at hand. Evolu-
tionary success is defined by rapidly finding good
enough solutions rather thanmeticulously comput-
ing globally optimal solutions. We intend to dem-
onstrate that robots controlled by similar
programmable regulators can achieve similarly

robust functionality. We can compare their
strengths and weaknesses with state-of-the-art
compliant controllers based on more traditional
trajectory planning and servocontrol.

The problemwith applying a regulator to a robot
is that we do not have any blueprints. The pro-
perties of most mechatronic systems are so differ-
ent from biological musculoskeletal systems that
the patterns of interneurons known in the spinal
cord cannot be applied to the robot. Sowewill have
to recapitulate the evolution of the spinal regulator
by using a genetic algorithm (Ijspeert, 2001).
Genetic algorithms create and evolve structures
incrementally, keeping components that improve
performance and rejecting those that do not. In this
case, the performance criterion is the speed and
security with which a simple gradient descent con-
troller can learn to perform a repertoire of diverse
tasks using each new generation of regulator.
Because the mechanical dynamics and sensors of
the robot are actually substantially simpler to
model than their biological counterparts, it should
be feasible to evolve a fairly sophisticated regulator
using a fast PC.

Learning to perform tasks

The redundancy problem is not really a problem for
the nervous system because, unlike most robotic
controllers, it does not try to compute analytical sol-
utions to new problems. Rather the brain starts
with one of the motor programs that it already
knows (or a random output if an infant) and gradu-
ally refines that program until it gets what it wants.
Given a reasonable repertoire of motor skills, most
of the problem posed by a new task is the percep-
tual one of recognizing similarities to something
already in the repertoire. The process of refine-
ment by trial-and-error is made efficient and reli-
able by the many, good enough local minima of
the regulator. This is distinctly different from
servocontrollers, whose gains and input commands
aremore critical and are better set by analytical sol-
utions for optimal control (Todorov and Jordan,
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2002).Given a suitable regulator and a suitable cost
function defining a task, it should be straightfor-
ward to train a model of cortical motor control. To
achieve performance similar to a human, the cost
function should probably include both kinematic
terms related to accuracy and energetic terms
related to effort. Interestingly, the spinal-like regu-
lator seems predisposed to identifying motor
strategies that result in minimal coactivation of
actuators (Raphael et al., 2010), similar to the
patterns seen in well-learned tasks performed by
biological subjects.

Cortical consolidation

Surprisingly, after adequate performance has
been achieved in a motor task, the controller in
the brain continues to introduce large, apparently
random fluctuations in its behavior (Churchland
et al., 2010). We can surmise that the next level
of controller upward in the hierarchy (e.g., pre-
motor cortex) is performing its own trial-and-
error learning to minimize some cost function.
What might that cost be? From the well-described
plasticity of cortical representations, we can sur-
mise that the computational resources of the cor-
tex are finite and perhaps a limiting factor in the
repertoire and resolution of motor tasks that can
be learned. When good enough performance is
first achieved, the number of cortical mot-
oneurons contributing to the net gains in the spi-
nal regulator is likely to be much larger than
necessary. This is because those net gains are
the result of diverse excitatory and inhibitory
functions controlled directly by each corticospinal
motoneuron as well as indirectly via extrapyrami-
dal subsystems that are also ultimately under the
control of the cerebral cortex. By gradually
adjusting the commands to the motor cortex, the
premotor cortex should be able to reduce over-
lapping and conflicting activity. Shrinking the cor-
tical neural representation of a given task frees up
computational machinery to learn another task.
The robustness of the spinal regulator, with its

many good enough local minima, makes it rela-
tively easy and safe to employ trial-and-error
learning in all stages.

Cortical representations

Because there are many good enough solutions to
common motor tasks, the repertoire of solutions
that a given brain has at its disposal is likely to
be rather different from another brain that has
learned to achieve similar nominal performance.
If a previously learned task is complicated by
new loads, perturbations, or accuracy
requirements, those different starting strategies
may have different utilities and consequences.
Psychophysicists studying motor learning usually
create learning curves by averaging the data from
many different subjects with similar starting skills,
but these smooth, averaged curves do not reflect
the apparently random, stepwise processes that
actually occur in the individual subjects (Gallistel
et al., 2004). They also fail to account for sport
coaching practices that are required to force
athletes out of idiosyncratic, well learned but ulti-
mately suboptimal habits.

By utilizing trial-and-error learning of good
enoughbehaviors insteadof analytical optimal con-
trol, biological systems have accepted a Faustian
bargain that roboticists have traditionally rejected:
biological systems can rapidly achieve acceptable
and stable performance with noisy components
but are unlikely ever to achieve globally optimal
performance. One consequence of that bargain is
that the signals that can be recorded from behaving
biological systems can never be fully understood by
correlating them with the predictions of analytical
engineering tools (e.g., Churchland and Shenoy,
2007). The deeper one dives from the unavoidable
requirements of physics into the more arbitrary
details of neural representations, themore the data
become colored by the unique and essentially ran-
domexperiences of the individual subject. This fun-
damental limit to experimental reductionism
provides the rationale for our alternative approach
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based on simulation and synthesis. We choose
haptics over other motor behaviors that have
already been studied reductionistically because
haptics requires rich sensorimotor integration and
it has little reductionist baggage to discard.

Development and testing of Haptic robots

Mechatronic platform

A great variety of robotic arms and hands for
both research and industrial applications have
been developed over many years (Table 1).
The more anthropomorphic systems of late tend
to be more expensive and more fragile, both
because of their complexity and their limited pro-
duction for research. It is not clear what level of
verisimilitude is necessary to generalize lessons
learned from a haptic robot to a haptic human
or vice versa.

Biomimetic tactile sensing

A variety of technologies have been used in tac-
tile sensors (Table 2), but commercially available
tactile sensors tend to be limited to relatively
coarse arrays of normal-force sensors based on
compression of elastic materials. In fact, most of
the commercially available hands listed in Table 1
are not supplied with any tactile sensing. Many
technologies are difficult to apply to the curved,
deformable “skin” that facilitates grip and few
are able to resist damage in the electromechani-
cally hostile environments in which hands are
often used (moisture, grit, sharp edges, etc.).
One promising new candidate is the BioTacÒ, a
biomimetically designed, multimodal array that
provides most of the dynamic range of human tac-
tile sensing for location, magnitude, and vector
direction of contact forces, microvibrations
associated with slip and textures, and thermal flux
resulting from contact with objects that differ in

thermal effusivity (Lin et al., 2009; Raphael
et al., 2010; Wettels et al., 2008, 2009) (Fig. 3).

Compliant control algorithms

Many of the exploratory movements that underlie
human haptics involve force or impedance control
rather than position control, meaning that the tra-
jectory of the limb results from a dynamic interac-
tion between the robot and objects that it
encounters. Most robots use highly geared DC
and stepping motors that generate whatever
torque is required to produce precise movements.
When external forces are applied to them, they
behave in a stiff rather than a compliant manner.
In order to behave compliantly, these motors
must be fitted with torque or force sensors that
actively modify the position commands to which
they are responding. If these control loops and
motors are sufficiently fast, the system can
achieve a reasonable approximation of the com-
pliant control that arises naturally from biological
muscles, which generate forces that depend on
position and velocity of movement. Recently,
such control principles have been organized into
Dynamic Movement Primitives (DMP; Schaal,
2006), a system of nonlinear differential equations
whose parameters correspond to the speed and
accuracy criteria that are typically applied
to biological affordances (Pastor et al., 2009;
Schaal, 2007).

Visual targeting

Much haptic behavior in humans tends to start
with visual information about an object of interest
and its location in extrapersonal space. If the
object is familiar, this information alone may be
sufficient to identify the object and its expected
handling properties. If not, it may provide conve-
nient, albeit occasionally misleading, starting
assumptions (e.g., large objects tend to be heavy,
shiny surfaces tend to be slippery, etc.). Location,
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Table 1. Summary of mechatronic hands

Research group Tactile sensing technology DOF Comments

Utah/MIT hand Capacitive normal force 16
USC/Belgrade hand Normal-force-sensitive resistors 20
Honda hand Normal-force-sensitive resistors 2 þ part of ASIMO robot
Hirzinger hand Normal-force-sensitive resistors 12 þ
NASA robonaut 2 6-DOF load cells in fingertip 24 þ
GiFu III hand Pressure-sensitive conductive ink 16 þ
Southampton hand Piezoelectric polymer film 4 Prosthetic prototype
Stanford/JPL hand 6-axis strain gauge 9
UB III hand 6-axis IT sensors 16 þ
Smart hand Triaxial MEMS array 16 Follow-on from cyber hand
Dist hand Triaxial force, slip sensors 16 þ
DLR II hand Conductive polymer grid 13 þ
Shadowhand Quantum tunneling composite 24 *
Yokoi III Force sensitive resistors 13 þ Tsukasa Kiko engineering
iLIMB pulse None * for prosthetic use
LMS hand Unknown 16 þ
BUAA hand Unknown 16 þ
Zurich/Tokyo hand Force sensitive resistors 13 þ
Torino hand Unknown Unknown
RCH-I hand Unknown Unknown
MA-I hand None 16
SARAH hand None 10 *
RTR II hand None 9 þ Prosthetic prototype
Vanderbilt hand None 9 þ Pneumatic (peroxide)
ACT hand None 24 þ
Barrett hand None 4 *
Vecna HG2 None 6 * Hydraulic, hand camera
Heidelberg fluid hand None Unknown þ
LMS hand None 16
Anybots Monty hand None 18 þ
Tuat/Karlsruhe hand None 20 Prosthetic prototype
Ultralight None 13 þ
Elumotion–Sheffield hand None 20 þ
Orebro University Sweden None 12
Manus Colobi None 3
TBM hand None Unknown þ Prosthetic hand
Otto Bock Michelangelo 2 None 2 * for prosthetic use

* denotes currently available commercially; þ denotes currently under development by research teams.
http://www.davidbuckley.net/RS/HandResearch.htm
http://asimo.honda.com/asimo-specs/
http://robonaut.jsc.nasa.gov/default.asp
http://www-arts.sssup.it/newCyberhand/smarthand/index.htm
http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-3802/6102_read-8923/
http://www-lar.deis.unibo.it/activities/dexterousmanipulation/UBHandIII/index.html
http://robot.gmc.ulaval.ca/en/research/theme304.html
http://www.touchbionics.com/Pulse
http://www.vanderbilt.edu/exploration/stories/bionicarm.html
http://www.vecnarobotics.com/solutions/end_effectors/hg2.shtml
http://haptic.buaa.edu.cn/English_dexteroushand.htm
http://neurobotics.cs.washington.edu/projects.html
http://www.barrett.com/robot/products-hand.htm
http://www.elumotion.com/shefarm.html
http://www.ottobock.com/cps/rde/xchg/ob_com_en/hs.xsl/32149.html?openteaser¼1
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Table 2. Summary of tactile sensors

Transduction
method

No.
of
axis Multimodal Advantages Disadvantages Example

Capacitive 1 No Small, very high resolution
taxels, can be flexible, wide
dynamic range, sensitive

Hysteresis, noise Pressure profile systems
robotouch:
http://www.pressureprofile.
com/technology-capacitive.php

Inductive 1 No High sensitivity, repeatability Complex, vulnerable
construction, low
spatial resolution

Futai et al. (2003)

Resistive:
deformable
contact area

1 No Flexible, thin Hysteresis Inaba: Inastomer http://www.
inaba-rubber.co.jp/en/
b_products/inastomer/index.
html

Resistive:
conductive
fabric

1 No Flexible, robust, simple Unable to resolve
more than one
contact point

Pan and Zhu (2005)

Resistive:
quantum
tunneling
composite

1 No Sensitive, wide dynamic
range

Hysteresis, gas
absorption

QTC: http://www.peratech.
com/

Resistive: strain
gauge

6 No Same as above Bulky, expensive ATI: Nano 17 load cell: http://
www.ati-ia.com/products/ft/
sensors.aspx

Resistive:
Piezoresistive
conductive
polymer

1 No Thin, low cost, simple Hysteresis, stiff Tekscan Flexiforce: http://
www.tekscan.com/flexiforce.
html

Resistive:
Piezo-MEMS

6 Yes Small, multielement Large number of
wires in workspace

Oddo et al. (2009), Beccai
et al. (2005)

Polymer-MEMs
(multimodal)

6 Yes 6-DOF force, temperature
and heat flow, roughness

Large number of
wires in workspace,
wiring complexity

Engel et al. (2006)

Piezoelectric 1 Yes Detects dynamics for slip and
texture

Only detects
dynamic events,
thermal sensitivity

Dario et al. (1984), Howe and
Cutkosky (1993)

Optical: video
processing

3 No Very high resolution,
sensitive

Computationally
intensive, sensitive
to ambient light

Hristu et al. (2000), Ohka et al.
(2004)

Optical:
resistive

1 No Flexible, low hysteresis Complex fabrication http://www.skilsens.com/index.
html

Magneto-elastic 1 No Very sensitive, low hysteresis Sensitive to external
magnetic fields

Mitchell et al. (1986)

Magneto-
resistive

6 No Robust, sensitive, low
hysteresis

Noisy Hackwood et al. (1983)

Ultrasound 1 Yes Static and dynamic High voltage,
complex electronics

Brashford and Hutchins
(1996), Grahn and Astle
(1986)
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size, and regions of interest for grasp or contour
following can be extracted readily from ste-
reovision. Machine vision has developed fairly
sophisticated algorithms for all of these functions.

Exploratory algorithms

As discussed above, the decision about which
exploratory movement to employ at any given
time depends on whatever prior information is
currently available about the probable identity
of an object and the property of the object that
is most likely to distinguish it from other possible
objects. After selecting and initiating a specific
exploratory strategy, the details of the movement

may need to be driven by received sensory data
(e.g., contour following) or adjusted iteratively
to fine-tune discrimination (e.g., repeated hefting
to assess weight or stroking to assess texture).

Internal representations

In order to extract a typical canonical physical
property of an object (e.g., weight, texture, etc.),
any sensory data received during an exploratory
movement would have to be deconvolved with
the parameters of the exploratory movement in
order to yield information specific to the object.
In order to use canonical physical properties to
inform the dexterous manipulation of that object,

Rigid core

External texture
fingerprints

Impedance
electrodes

Conductive
fluid

Elastic skin

Pressure
sensor

Thermistor

Fig. 3. A biomimetic, multimodal tactile sensor with the physical form and mechanical properties of a fused middle and distal
phalanx consisting of a deformable skin inflated over a rigid core by a conductive fluid. Location, magnitude, and direction of
contact forces can be extracted from changes in the pattern of electrical impedances measured through the conductive fluid by
electrodes distributed over the surface of the core (visible through transparent skin in photo below). A pressure sensor
connected to the fluid functions like a hydrophone to detect acoustic vibrations associated with slip or sliding over textured
surfaces, which are enhanced by fingerprint-like ridges molded into the skin. The thermal material properties of objects
contacting the finger can be assessed by a thermistor that measures heat flow from the heated core (Lin et al., 2009; Wettels
et al., 2009). Sources: Upasani et al. (1999), Biagiotti et al. (2002), Puig et al. (2008).
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the anticipated dynamic effects of those pro-
perties on the proposed manipulation would have
to be computed, something that has been
attributed to “internal dynamic models”
(Imamizu et al., 2000; Kawato, 2008). Alterna-
tively, the brain could represent objects as a set
of learned associations in which each association
includes both the output parameters of the
exploratory movement (available from the many
copies of efferent signals that project recurrently
in the central nervous system) and the sensory
data associated with the object being manipulated
in that way (e.g., tactile, proprioceptive, visual,
auditory; Pastor et al., 2009). This would facilitate
the Bayesian strategy selection described above
as well as the recall of appropriate motor strategies
for dexterous manipulation of the object.

Conclusions

Hapticbehaviorsdonot lend themselves to the types
of reductionist studies in animals that have been
effective in revealing the neural computational
algorithms that underlie other perceptual
capabilities such as vision and hearing. Instead, it
may be possible to develop and test theories of hap-
tic computation by applying them to robotic pla-
tforms whose sensory and motor capabilities are
increasingly biomimetic. For this to be effective,
however, it may be necessary to recapitulate at least
some of the early cognitive stages during which
intelligent organisms develop representations of
themselves and the external world. Those
representations and strategiesmaybe somewhat idi-
osyncratic, further emphasizing the importance of
understanding the processes rather than the results.
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